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SUMMARY

The mathematical model describing transients in natural gas pipelines constitutes a non-homogeneous
system of non-linear hyperbolic conservation laws. The time splitting approach is adopted to solve this
non-homogeneous hyperbolic model. At each time step, the non-homogeneous hyperbolic model is split
into a homogeneous hyperbolic model and an ODE operator. An explicit 5-point, second-order-accurate
total variation diminishing (TVD) scheme is formulated to solve the homogeneous system of non-linear
hyperbolic conservation laws. Special attention is given to the treatment of boundary conditions at the
inlet and the outlet of the pipeline. Hybrid methods involving the Godunov scheme (TVD/Godunov
scheme) or the Roe scheme (TVD/Roe scheme) or the Lax–Wendroff scheme (TVD/LW scheme) are
used to achieve appropriate boundary handling strategy. A severe condition involving instantaneous
closure of a downstream valve is used to test the efficacy of the new schemes. The results produced by
the TVD/Roe and TVD/Godunov schemes are excellent and comparable with each other, while the
TVD/LW scheme performs reasonably well. The TVD/Roe scheme is applied to simulate the transport
of a fast transient in a short pipe and the propagation of a slow transient in a long transmission pipeline.
For the first example, the scheme produces excellent results, which capture and maintain the integrity of
the wave fronts even after a long time. For the second example, comparisons of computational results are
made using different discretizing parameters. Copyright © 2000 John Wiley & Sons, Ltd.

KEY WORDS: hybrid scheme; hyperbolic conservation laws; natural gas pipeline; non-homogeneous
hyperbolic system; transient flow; TVD scheme; wave propagation

1. INTRODUCTION

Cost-effective design and operation of a gas transmission system require accounting for its
response under unsteady or transient conditions. Actual operations invariably encounter
transient states. The loss of a compressor, the addition or loss of supply or sale points,
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equipment malfunction, start-up and shutdown process and variable demands are just a few
examples of the causes of pipeline transients.

Under isothermal conditions, the continuity and momentum equations, together with the
equation of state, constitute the governing equations describing transient flow in natural gas
pipelines. The assumptions usually made include isothermal flow, applicability of steady state
friction and negligible wall expansion or contraction under pressure loads. For simulating
transient flow of single-phase natural gas in pipelines, many previous investigators neglect the
inertia term in the governing equations. This renders the resulting set of partial differential
equations linear. Numerical methods previously used to solve this system of linear partial
differential equations include the method of characteristics (MOC) and a variety of explicit and
implicit finite difference schemes [1–4]. Neglecting the inertia term in the momentum equation
will result in loss of accuracy of the simulation results. In order to compensate for the
exclusion of the inertia term from the momentum equation, Yow [5] introduced the concept of
inertia multiplier to partially account for the effect of the inertia term in the momentum
equation. Wylie et al. [6] simulated transients in natural gas pipelines in accordance with the
concept of the inertia multiplier. Rachford and Dupont [7] have demonstrated that calculations
based on the concept of inertia multiplier will sometimes yield very misleading results. In the
present study, the inertia term in the momentum equation is fully included. The governing
equations, together with an equation of state, constitute a non-homogeneous hyperbolic system
of first-order quasi-linear partial differential equations. The numerical solution of this set of
non-homogeneous quasi-linear hyperbolic partial differential equations is not trivial.

First-order upwind schemes, derived from Steger and Warming’s extension via flux splitting
[8] of the Courant–Isaacson–Rees scheme [9] to non-linear hyperbolic systems usually lead to
exceedingly viscous (dissipative) schemes, which tend to ‘smear’ non-stationary shocks and
other discontinuities. The introduction by Lax–Wendroff [10], followed by MacCormack [11],
of second-order centered schemes was accompanied, in spite of a substantial improvement in
the overall accuracy, by the problem of damping or eliminating the oscillations that appear in
the neighborhood of discontinuities [12]. This was done originally by introducing into the
scheme an artificial viscosity term [13], which required a problem-dependent treatment,
admittedly a rather awkward prerequisite for engineering applications.

Another approach is introducing a change of monotonicity detector [14,15], which can find
the nodes where the monotonicity is broken and then trigger an efficient counter-measure, in
the form of a flux limiter or slope limiter [14–16].

More recently, the concept of total variation diminishing (TVD) schemes introduced by
Harten [17,18] extends ideas on monotonicity, which had been proposed for linear schemes by
Godunov [19]. This has led to a wide range of first- and higher-order-accurate methods, which
prove to be useful, both for theoretical and real engineering applications.

In the present study, an explicit, 5-point, second-order-accurate TVD scheme is formulated
to solve the homogeneous part of a non-linear system of hyperbolic conservation laws
describing transients in horizontal natural gas pipelines based on Harten’s explicit, second-
order-accurate TVD scheme [17]. Special attention is given to the numerical boundary
conditions treatment at the inlet and at the outlet of the pipeline (i.e. the node 0 and nj
respectively). Because the present explicit, second-order-accurate TVD scheme is a 5-point
scheme, additional numerical schemes are needed for the two penultimate nodes (1 and nj−1).
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The explicit, 3-point, first-order-accurate Godunov scheme, the explicit, 3-point, second-order
Lax–Wendroff (LW) scheme, and the explicit, 3-point, first-order Roe scheme are used for this
purpose. This results in hybrid TVD schemes, namely TVD/Godunov, TVD/LW and TVD/
Roe schemes. For a test problem involving instantaneous closure of a downstream valve, the
TVD/Roe and TVD/Godunov schemes produced excellent results, while the TVD/LW scheme
performed reasonably well.

The TVD/Roe scheme is applied to simulate two field pipeline examples: (1) the transport
of a fast transient in a short, 24 in. pipe, 300 ft long; (2) the propagation of a slow transient
flow, with a 24 h cycle, in a 45 mile long, 8 in. inner diameter, transmission pipeline. For
example (1), the TVD/Roe scheme produces excellent results, which capture and maintain the
integrity of the wave fronts, even after a long time. The explicit, 3-point, first-order-accurate
Godunov scheme also successfully produces the results; however, it loses accuracy with time.
For example (2), comparisons of the computational results are made using different grid sizes,
time steps and the Courant–Friedrich–Lewy (CFL)-like restrictions.

2. DEVELOPMENT OF THE MATHEMATICAL MODEL

For a pipeline with constant cross-sectional area, the one-dimensional continuity equation for
natural gas flow is

(

(t
(r)+

(

(x
(ru)=0, (1)

where r is the gas density, u is the gas velocity along the pipeline, x is the distance along the
pipeline from pipeline inlet, and t is the time from the start of the time interval of interest.

The one-dimensional form of the momentum equation for gas flow in horizontal pipelines
with constant temperature distribution along pipelines is given by

(

(t
(ru)+

(

(x
(ru2)= −

(p
(x

−
fgru �u �

2D
, (2)

where p is the gas pressure, fg is the friction factor for natural gas flow, and D is the internal
diameter of the pipeline.

Writing the equation of state for natural gas as

p=
ZRT
Mg

r, (3)

where Z is the natural gas compressibility factor, R is the universal gas constant, T is the
absolute gas temperature, and Mg is the gas molecular weight.

Assuming isothermal flow conditions in the pipeline, the acoustic wave speed is given by

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 407–437



J. ZHOU AND M.A ADEWUMI410

c=
�ZRT

Mg

�1/2

. (4)

The steady state friction factor is used in the transient calculations, similar to conventional
practice in the literature. The friction factor fg can be calculated with the Chen’s equation [20].
An average value of Z is used, and it is calculated from the Dranchuk and Abou-Kassem’s
method [21].

Setting m=ru and substituting Equation (4) into Equation (3), Equations (1) and (2) may
be rearranged as the following set of one-dimensional, first-order, non-linear hyperbolic partial
differential equations for transient flows in horizontal natural gas pipelines:

(

(t
r+

(

(x
m=0, (5)

(

(t
m+

(

(x
�m2

r
+c2r

�
= −

fgm �m �
2Dr

. (6)

Equations (5) and (6) can be written in the following compact form:

(

(t
U� +
(

(
F� (U� )=r	 (U� ), (7)

where

U� =
�r

m
n

, F� =
m

m2

r
+c2r

, r	 (U� )=

0

−
fgm �m �
2Dr

. (8)

Equation (7) is the non-homogeneous hyperbolic model describing transients in horizontal
natural gas pipelines.

3. CHARACTERISTIC EQUATIONS FOR THE NON-HOMOGENEOUS
HYPERBOLIC MODEL

There are two distinct eigenvalues for the Jacobian matrix A= ((/(U� )F� (U� ), i.e.

a1=u−c, a2=u+c. (9)

Following the method described by Hirsch [22], the characteristic equation C− correspond-
ing to the eigenvalue a1 can be derived as
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This can be written in the conservative variables as�
1+

m
rc
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The characteristic equation C+ corresponding to the eigenvalue a2 can also be derived as
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This can also be written in the conservative variables as�
1−

m
rc
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+
1
c
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+
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= −
fgm �m �
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. (13)

4. THE INITIAL CONDITIONS

The solution of Equation (7) proceeds from specified initial field variable distributions, i.e. the
distributions of gas density, r, and gas mass flux, m=ru, throughout the pipeline. In the absence
of field data concerning the initial field variable distributions, it is assumed that steady state
variable distributions comprise the initial conditions. These steady state distributions are
obtained using an analytical equation [23], written as

r̄=
fgm0

2

Dc2r0
2

�D
fg

ln r̄−DL
�

+1, (14)

where

r̄=
�r

r0

�2

. (15)

Equation (14), which is implicit in r̄, is well suited for fixed-point iteration for determining
density or pressure distributions.

5. FORMULATION OF THE NUMERICAL SCHEMES

5.1. Time splitting approach for non-homogeneous hyperbolic model

For the non-homogeneous hyperbolic model (7), the time splitting approach [24] is adopted to
maintain the second-order accuracy of the complete scheme. At each time step, Equation (7)
may be split into the following two subproblems:
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(

(t
U� +

(

(x
F� (U� )=0, (16)

(

(t
U� =r	 (U� ). (17)

Equation (16) is the source-free hyperbolic model, while Equation (17) is an ODE operator.
The exact solution of Equation (17) is

r̃

m̃

1+
fg

2Dr̃
Dt �m̃ �

�r

m
n

= , (18)

where U0 = [r̃, m̃ ]T is the solution of Equation (16) using the TVD scheme.

5.2. High resolution TVD scheme for homogeneous hyperbolic conser6ation laws

For reference purposes, a particular version of Harten’s second-order-accurate, 5-point explicit
TVD scheme for a one-dimensional homogeneous system of hyperbolic conservation laws is
briefly described [17]. Consider a system of hyperbolic conservation laws of the form

(

(t
U+

(

(x
f(U)=0, (19)

where U is the vector of m conserved variables and f is the flux vector. The Jacobian matrix
A(U)= ((/(U)f(U) has real eigenvalues (a1, a2, . . . , am) and a complete set of right eigenvec-
tors. Let R= (R1, R2, . . . , Rm) be a matrix whose columns are the right eigenvectors of A and
let L be a matrix whose rows are the left eigenvectors of A.

Let Uj+1/2=V(Uj, Uj+1) denote an average of Uj and Uj+1, i.e. a smooth function V(u, 6)
such that

V(u, 6)=V(6, u), (20)

V(u, u)=u, (21)

and let a j+1/2
k denote the component of Dj+1/26=6j+1−6j in the co-ordinate system

{Rk(6j+1/2)}

Dj+1/26= %
m

k=1

a j+1/2
k Rj+1/2

k , (22)

a j+1/2
k =Lj+1/2

k Dj+1/26. (23)

Here we use the notation convention bj+1/2=b(6j+1/2)=b(V(6j, 6j+1)).
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Then, one particular version of Harten’s 5-point, second-order-accurate, explicit TVD
scheme [17] can be written as follows:

6 j
n+1=6 j

n−l(f0 j+1/2− f0 j−1/2), (24)

f0 j+1/2=
1
2
�

f(6j)+ f(6j+1)−
1
l

%
m

k=1

b j+1/2
k Rj+1/2

k n
, (25)

where

b j+1/2
k =Qk(n j+1/2

k +Yj+1/2
k )a j+1/2

k − (gj
k+gj+1

k ), (26)

n j+1/2
k =lak(6j+1/2), (27)

gi
k=Si+1/2

k max[0, min(�g̃ i+1/2
k �, g̃ i−1/2

k Si+1/2
k )], Si+1/2

k =sgn(g̃ i+1/2
k ), (28)

g̃ i+1/2
k =

1
2

[Qk(n i+1/2
k )− (n i+1/2

k )2]a i+1/2
k , (29)

Yi+1/2
k =

(gi+1
k −gi

k)
a i+1/2

k , when a i+1/2
k "0, (30)

Yi+1/2
k =0, when a i+1/2

k =0.

Here l=Dt/Dx.
Similarly, the second-order-accurate LW-type scheme and the first-order-accurate Godunov-

type scheme are presented.

(1) The second-order-accurate LW-type scheme is obtained from (24) and (25) by defining

b j+1/2
k = (n j+1/2

k )2a j+1/2
k . (31)

This is referred to as the LW scheme.

(2) The first-order-accurate Godunov-type scheme of Roe [17,25] is also obtained by defining
b as follows:

b j+1/2
k = �n j+1/2

k �a j+1/2
k . (32)

This is referred to as the Roe scheme.

It is worthwhile pointing out that in the formulation of Harten’s 5-point, second-order-
accurate, explicit TVD scheme, no particular form of averaging V(u, 6) (20) and (21) is
required. Roe [25] uses a specific form of averaging that, on top of being mathematically
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appealing, also enables the computational advantage of perfectly resolving stationary disconti-
nuities. In all the schemes and experiments reported herein, the Roe linearization technique
[25] is employed.

5.3. The Roe linearization technique for one-dimensional natural gas transients in pipelines

The mathematical model describing transient flows in natural gas pipelines is governed by
Equations (7) and (8) or (9) and (10), which are the isothemmal one-dimensional Euler
equations with wall friction. LeVeque [26] presented a Roe matrix for isothermal Euler
equations of one-dimensional gas dynamics as follows:

A0 (6l, 6r)=
� 0 1

c2− ū2 2ū
n

, (33)

where the average velocity ū has been defined by

ū=
r l

1/2ul+r r
1/2ur

r l
1/2+r r

1/2 . (34)

This is often called the rho-averaged (or Roe-averaged) velocity. A0 can be viewed as being the
Jacobian matrix ((/(U� )F� (U� ) evaluated at the averaged velocity ū. The eigenvalues and
eigenvectors of A0 are given by

ã1= ū−c, ã2= ū+c, (35)

R0 1=
� 1

ū−c
n

, R0 2=
� 1

ū+c
n

. (36)

Let ak(6l, 6r), k=1, 2 be the solution of the following system of linear equations [see
Equation (22)]:

6r−6l= %
2

k=1

akR0 k(V(6l, 6r)). (37)

Substituting Equation (36) into (37), then ak in (37) are obtained by

a1=
1
2c

{− (mr−ml)+ (rr−rl)[ū+c ]}, (38)

a2=
1
2c

{(mr−ml)− (rr−rl)[ū−c ]}. (39)
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5.4. Formulation of the 5-point, second-order TVD scheme for the source-free hyperbolic
model

In the formulation of the 5-point, second-order-accurate, explicit TVD scheme for the
source-free hyperbolic model (16), the coefficient of numerical viscosity Qk(6) of Harten’s
5-point, second-order, explicit TVD scheme [see Equations (24)–(30)] will be selected as

Qk(6)= �6 �. (40)

Substituting Equations (34)–(36) and (38)–(40) into Harten’s TVD scheme for general
homogeneous hyperbolic systems of conservation laws [see Equations (24)–(30)], the second-
order, 5-point, explicit TVD scheme for the source-free hyperbolic model (16) is given below.

r j
n+1=r j

n−
l

2
(mj+1

n −mj−1
n )+

1
2

[(b j+1/2
1 +b j+1/2

2 )− (b j−1/2
1 +b j−1/2

2 )],

j=2, 3, . . . , nj−2, (41)

mj
n+1=mj

n−
l

2
!�(mj+1

n )2

r j+1
n +c2r j+1

n n
−
�(mj−1

n )2

r j−1
n +c2r j−1

n n"
+

1
2

{{b j+1/2
1 [ū(6j+1/2)−c ]+b j+1/2

2 [ū(6j+1/2)+c ]}

−{b j−1/2
1 [ū(6j−1/2)−c ]+b j−1/2

2 [ū(6j−1/2)+c ]}}, j=2, 3, . . . , nj−2, (42)

where

b l+1/2
k = �n l+1/2

k +Yl+1/2
k �a l+1/2

k − (gl
k+gl+1

k ), k=1, 2; l= j−1, j, (43)

gl
k=Sl+1/2

k max[0, min(�g̃ l+1/2
k �, g̃ l−1/2

k Sl+1/2
k )], Sl+1/2

k =sgn(g̃ l+1/2
k ), k=1, 2;

l= j−1, j, j+1, (44)

g̃ l+1/2
k =

1
2

[�n l+1/2
k �− (n l+1/2

k )2]a l+1/2
k , k=1, 2; l= j−2, j−1, j, j+1, (45)

n l+1/2
k =lak(6l+1/2), k=1, 2; l= j−2, j−1, j, j+1, (46)

Yl+1/2
k =

(gl+1
k −gl

k)
a l+1/2

k , when a l+1/2
k "0,

Yl+1/2
k =0, when a l+1/2

k =0, k=1, 2; l= j−1, j, (47)

a1(6l+1/2)= ū(6l+1/2)−c, l= j−2, j−1, j, j+1, (48)

a2(6l+1/2)= ū(6l+1/2)+c, l= j−2, j−1, j, j+1, (49)
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ū(6l+1/2)=

r l

nu l
n+
r l+1

n u l+1
n


r l
n+
r l+1

n
, l= j−2, j−1, j, j+1, (50)

a l+1/2
1 =

1
2c

{− (ml+1
n −ml

n)+ (r l+1
n −r l

n)[ū(6l+1/2)+c ]}, l= j−2, j−1, j, j+1, (51)

a l+1/2
2 =

1
2c

{(ml+1
n −ml

n)− (r l+1
n −r l

n)[ū(6l+1/2)−c ]}, l= j−2, j−1, j, j+1. (52)

Here ul
n=ml

n/r l
n and l=Dt/Dx.

5.5. Numerical treatment of boundary conditions

Physical boundary conditions at the inlet and outlet of pipelines will be imposed to allow the
consideration of a wide variety of field situations. The physical boundary conditions fall into
two categories: (1) the inlet natural gas density (or pressure) is maintained at a constant value
(or a known function of time), while the outlet mass flux is a known function of time (or a
constant value); (2) both the inlet and outlet mass fluxes are some known functions of time
respectively. These are all the boundary conditions required by the governing equations (5) and
(6) or (7) and (8). In addition to physical boundary conditions required by the governing
equations, numerical boundary conditions at the inlet and outlet are required by the finite
difference schemes.

The characteristic boundary method, the first-order and second-order space extrapolation
methods, and a one-sided first-order difference method [29–31] are tested as the numerical
boundary conditions handling strategies. The finite difference equations developed for the
treatments of boundary conditions in each case are described below.

(1a) If the inlet natural gas density (or pressure) remains constant or is a known function of
time, then the finite difference equation at the inlet of the pipeline for the gas mass flux may
be written as follows:

Characteristic boundary method:

m0
n+1=m0

n−
Dt
Dx

�
c−

m0
n

r0
n

���
c+

m0
n

r0
n

�
(r1

n−r0
n)− (m1

n−m0
n)
n

−
fg

2D
m0

n�m0
n�

r0
n Dt

+
�

c+
m0

n

r0
n

�
(r0

n+1−r0
n). (53)

First-order space extrapolation:

m0
n+1=m1

n+1. (54)
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Second-order space extrapolation:

m0
n+1=2m1

n+1−m2
n+1. (55)

One-sided first-order difference method:

m0
n+1=m0

n−
Dt
Dx

��(m1
n)2

r1
n +c2r1

n�−
�(m0

n)2

r0
n +c2r0

n�n−
fg

2D
m0

n�m0
n�

r0
n Dt. (56)

(1b) If the inlet mass flux is constant or a known function of time, then the finite difference
equation at the inlet of the pipeline for the gas density may be written as below:

Characteristic boundary method:

r0
n+1=r0

n+
Dt
Dx

(m0
n−m1

n)
1−

m0
n

cr0
n

1+
m0

n

cr0
n

−
Dt
Dx

(r1
n−r0

n)
�m0

n

r0
n −c

�
+

m0
n+1−m0

n

c+
m0

n

r0
n

+
fgm0

n�m0
n�Dt

2Dr0
n�c+

m0
n

r0
n

� . (57)

First-order space extrapolation:

r0
n+1=r1

n+1. (58)

Second-order space extrapolation:

r0
n+1=2r1

n+1=r2
n+1. (59)

One-sided first-order difference method:

r0
n+1=r0

n+
Dt
Dx

(m0
n−m1

n). (60)

(2) If the outlet mass flux is a constant value or a known function of time, then the finite
difference equation at the outlet of the pipeline for the gas density may be written as follows:

Characteristic boundary method:
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rnj
n+1=rnj

n +
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1+

mnj
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crnj
n

1−
mnj

n

crnj
n

−
Dt
Dx

(rnj
n −rnj−1

n )
�mnj

n

rnj
n +c

�
−

mnj
n+1−mnj

n

c−
mnj

n

rnj
n

−
fgmnj

n �mnj
n �Dt

2Drnj
n �c−

mnj
n

rnj
n

� . (61)

First-order space extrapolation:

rnj
n+1=rnj−1

n+1 . (62)

Second-order space extrapolation:

rnj
n+1=2rnj−1

n+1 −rnj−2
n+1 . (63)

One-sided first-order difference method:

rnj
n+1=rnj

n +
Dt
Dx

(mnj−1
n −mnj

n ), (64)

where the subscripts 0 and nj denote values at node 0 and nj respectively, i.e. the inlet and
outlet of the pipeline.

5.6. Numerical schemes for the two penultimate nodes (1 and nj−1) when using TVD method

Since the second-order, explicit TVD scheme is a 5-point scheme rather than a 3-point scheme,
special schemes are needed for the two penultimate grid nodes (1 and nj−1). Usually,
researchers have implemented first-order space extrapolation method to handle these two
penultimate nodes (e.g. Yee et al. [27]). In the present study, hybrid methods involving the
3-point, first-order-accurate, explicit Godunov scheme (TVD/Godunov scheme), or the 3-
point, first-order-accurate, explicit Roe scheme (TVD/Roe scheme) or the 3-point, second-
order, explicit Lax–Wendroff scheme (TVD/LW scheme) are used to achieve appropriate
boundary scheme handling strategy. These methods are presented below.

5.6.1. Hybrid method in6ol6ing the 3-point, first-order-accurate, explicit Goduno6 scheme. The
first-order, 3-point, explicit Godunov scheme [12,19] for the homogeneous hyperbolic model
(16) can be written as

U� j+1/2
n+1 =

1
2

(U� j+1
n +U� j

n)−
Dt
Dx

(F� j+1
n −F� j

n), (65)

U� j
n+1=U� j

n−
Dt
Dx

(F� j+1/2
n+1 −F� j−1/2

n+1 ). (66)
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By expanding Equations (65) and (66), the numerical boundary scheme for the homogeneous
hyperbolic model (16) at nodes 1 and nj−1, which is described by the 3-point, first-order-
accurate, explicit Godunov scheme, can be written as

r j+1/2
n+1 =

1
2

(r j+1
n +r j

n)−
Dt
Dx

(mj+1
n −mj

n), j=0, 1, nj−2, nj−1, (67)

mj+1/2
n+1 =

1
2

(mj+1
n +mj

n)−
Dt
Dx

�(mj+1
n )2

r j+1
n +c2r j+1

n −
�(mj

n)2

r j
n +c2r j

n�n,

j=0, 1, nj−2, nj−1, (68)

r j
n+1=r j

n−
Dt
Dx

(mj+1/2
n+1 −mj−1/2

n+1 ), j=1, nj−1, (69)

mj
n+1=mj

n−
Dt
Dx

�(mj+1/2
n+1 )2

r j+1/2
n+1 +c2r j+1/2

n+1 −
�(mj−1/2

n+1 )2

r j−1/2
n+1 +c2r j−1/2

n+1 �n
, j=1, nj−1, (70)

5.6.2. Hybrid method in6ol6ing the 3-point, first-order accurate, explicit Roe scheme. The Roe
scheme is used for the two penultimate grid nodes (1 and nj−1) while solving the source-free
hyperbolic model (16). This may be expressed by Equations (41), (42), (46) and (48)–(52), with
j=1, nj−1 and

b l+1/2
k = �n l+1/2

k �a l+1/2
k , k=1, 2; l= j−1, j. (71)

5.6.3. Hybrid method in6ol6ing the 3-point, second-order-accurate, explicit LW scheme. The
numerical scheme for the two penultimate grid nodes (1 and nj−1), which is described by the
3-point, second-order-accurate, explicit LW scheme, can be expressed by Equations (41), (42),
(46) and (48)–(52), with j=1, nj−1 and

b j+1/2
k = (n j+1/2

k )2a j+1/2
k , k=1, 2; l= j−1, j. (72)

A severe condition, involving instantaneous downstream valve closure will be used to test
the efficacy of these new second-order-accurate, explicit hybrid TVD schemes. In spite of the
strong wave generated, these schemes successfully handle the problem.

6. NUMERICAL EXPERIMENTS AND COMPARISONS

Three examples are simulated using both the first-order explicit Godunov scheme and the
second-order explicit hybrid TVD schemes. The first is a test problem of instantaneous closure
of a downstream valve; the second is the transport of a fast transient in a 300 ft long, 24 in.
inner diameter short pipeline; and the last is the propagation of a slow transient flow, with a
24 h cycle, in a 45 mile long, 8 in. inner diameter transmission pipeline.
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6.1. Test problem 1: instantaneous closure of downstream 6al6e

A severe condition, involving instantaneous downstream valve closure will be used to test the
efficacy of the numerical treatments of the boundary conditions at inlet and outlet of the
pipeline for both the first-order-accurate, explicit Godunov scheme and the second-order-accu-
rate, explicit hybrid TVD schemes. Included in these are TVD/Godunov, TVD/Roe and
TVD/LW schemes. The test problem is hereby stated. At t=0−, steady state flow is
established (pipeline length and diameter are 30 m and 0.1 m respectively) with gas mass flux
of 20 kg m−2 s−1 and inlet gas density of 2 kg m−3; at t=0+, the downstream valve is closed
instantaneously, thus setting the gas mass flux at the outlet equal to zero, while the inlet mass
flux is maintained at its original value. The isothermal sound speed is set at 360 m s−1, and
the wall friction factor is 0.03.

Figure 1. The predicted pressure wave propagation for test problem 1 (characteristic boundary treat-
ment).

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 407–437



TRANSIENTS IN NATURAL GAS PIPELINES 421

Figure 1 shows the predicted pressure wave propagation by the Godunov scheme, the
TVD/Roe scheme, the TVD/Godunov scheme and the TVD/LW scheme with characteristic
boundary treatment (see Equations (57) and (61)). Figure 2 shows the predicted gas mass flux
wave propagation. Figure 3 shows the predicted gas velocity wave propagation. In all the
numerical experiments, the grid size Dx=0.1 m, the time step Dt=0.1 ms, the CFL number
CFL=0.36 and the time interval between two neighboring wave fronts DT=4.5 ms. These
results demonstrate that the characteristic numerical boundary treatment is successful for both
the first-order Godunov scheme and the second-order hybrid TVD schemes. They have the
capability of capturing wave fronts without oscillations. For the appropriate numerical
boundary scheme handling strategy, both the hybrid TVD/Godunov and TVD/Roe schemes
produce excellent results without wave fronts oscillations, while the hybrid TVD/LW scheme

Figure 2. The predicted gas mass flux wave propagation for test problem 1 (characteristic boundary
treatment).
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Figure 3. The predicted gas velocity wave propagation for test problem 1 (characteristic boundary
treatment).

performs reasonably well with very slight wave front oscillations in the gas mass flux and gas
velocity wave predictions.

Figure 4 compares the performance of the first-order accurate Godunov scheme and the
second-order accurate hybrid TVD/Godunov scheme with characteristic boundary treatment
(see Equations (57) and (61)) by the prediction of pressure wave and gas mass flux wave
propagation and reflection in the pipeline. The pertinent parameters in Figure 4 are the same
as those in Figures 1–3. It can be observed that the second-order hybrid TVD/Godunov
scheme captures sharper wave fronts (pressure wave in Figure 4(a) and gas mass flux wave in
Figure 4(b)) than the first-order Godunov scheme.
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Figure 4. Comparison of Godunov scheme and TVD/Godunov scheme for test problem 1 (characteristic
boundary treatment).

Figures 5–7 show the performance of four different numerical boundary condition treat-
ment strategies for each of the three different hybrid TVD schemes (TVD/Roe, TVD/Godunov
and TVD/LW) respectively. All the pertinent parameters in these figures are the same as those
in Figures 1–4. Figure 5 shows the predicted gas mass flux wave propagation using the hybrid
TVD/Roe scheme with four different numerical boundary treatment strategies. The following
conclusions can be drawn from Figure 5 for the hybrid TVD/Roe scheme: (1) the characteristic
numerical boundary method produces the best result (a similar conclusion has been drawn by
Chu and Sereny [28]); (2) the first-order space-extrapolation method still produces good results
in this case; (3) the second-order space extrapolation method and the one-sided first-order
difference method are not as good as the characteristic numerical boundary method and the
first-order space-extrapolation method (a similar conclusion has been drawn by Chu and
Sereny [28]); they produce comparable results which have slight wave fronts oscillations near
the downstream valve at the very first time. These conclusions can also be drawn for the
hybrid TVD/Godunov scheme (Figure 6). For the hybrid TVD/LW scheme (Figure 7), all the
numerical boundary condition treatment strategies cannot eliminate wave fronts oscillations.
However, conclusions (1) and (3) still hold for the hybrid TVD/LW scheme in terms of the
wave fronts oscillations.

6.2. Test problem 2: fast transient in a short pipe

The transport of a fast transient in a short gas pipe with an impulse supply of gas mass flux
at the inlet of the pipe is simulated using both the Godunov and the TVD/Roe schemes. A
pipeline 300 ft (91.44 m) long and 24 in. (0.6096 m) in diameter is initially packed to 600 psi
along the pipeline with no flow. At t=0+, the upstream inflow begins to increase linearly and
reaches 600 MMCF/D at 0.145 s, then decreases linearly to zero again at 0.29 s, and then
remains constant at zero. The downstream end is closed. The friction factor is 0.03, and the
isothermal sound wave speed is 1142 ft s−1 (348 m s−1).
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Figure 5. TVD/Roe scheme with different numerical boundary condition treatments for test problem 1
(gas mass flux wave propagation).

Figure 8 shows the predicted pressure wave propagation using both the first-order Godunov
scheme and the second-order TVD/Roe scheme with the characteristic numerical boundary
treatment (see Equations (57) and (61)). For the calculation of the first-order Godunov
scheme, the grid size, Dx=0.9144 m (100 mesh elements), the time step, Dt=0.09144 ms,
hence CFL=0.0348; for the second-order hybrid TVD/Roe scheme, the same grid size was
used but the time step size is 10 times that for the Godunov scheme (Dt=0.9144 ms,
CFL=0.348). In both cases, the time interval between two neighboring fronts is DT=22.86
ms. It can be seen that during the initial period of 0.25146 s, both schemes produce similar
results, which completely capture the wave fronts.

In Figures 9–11, the discretizing parameters are the same as those in Figure 8 for both the
Godunov and the hybrid TVD/Roe schemes. Figure 9 shows the predicted pressure histories
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Figure 6. TVD/Godunov scheme with different numerical boundary condition treatments for test
problem 1 (gas mass flux wave propagation).

at the inlet for the time interval of 0–23 s. It can be observed that initially, the pressure peak
at the inlet increases with time, mainly due to the interaction between the pressure wave
propagation and reflection along the pipeline; subsequently, the pressure peak decreases with
time, mainly due to the dissipation nature of the flow system. Figure 10 shows a better
resolution of the predicted pressure histories at the inlet for the time interval of 0–2.4 s, while
Figure 11 shows the predicted pressure histories at the inlet for the time interval of 20–23 s.
Using the first-order Godunov scheme, the pressure wave fronts are maintained and captured
during the first 0.8 s. During the period of 0.8–2.4 s, there are some slight overshoots around
the wave front. After that, the pressure wave fronts are resolved but with loss of accuracy. On
the other hand, with the second-order hybrid TVD/Roe scheme, the integrity of the pressure
wave fronts have been captured and maintained within the total time interval of 0–23 s, which
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Figure 7. TVD/LW scheme with different numerical boundary condition treatments for test problem 1
(gas mass flux wave propagation).

indicates that the hybrid TVD scheme provides significant advantage over the explicit
Godunov scheme.

6.3. Test problem 3: slow transient in a long transmission pipeline

The propagation of a slow transient flow in an actual field transmission pipeline is simulated
using the TVD/Roe scheme with one-sided first-order difference method for the treatment of
numerical boundary conditions (see Equations (56) and (64)). The system is an 8.15 in. inner
diameter, 44.9 mile long pipeline transporting natural gas with a specific gravity of 0.675 at a
temperature of 50°F. The gas dynamic viscosity mg is 7.957×10−6 lbm ft−1 s−1, while the
roughness of the pipeline wall o is 0.024300 in. Due to the lack of initial field variable
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Figure 8. Predicted pressure wave propagation along pipeline for test problem 2.

Figure 9. Predicted pressure histories at the inlet for test problem 2.

distribution data, the steady state field variable distributions are imposed as the initial
conditions. A constant value of friction factor corresponding to the initial steady state flow
conditions is assumed to be applicable to the transient calculations. For the boundary
conditions, at the inlet of the pipeline, the gas density (or pressure) is held constant, while at
the outlet of the pipeline the gas mass flux varies with a 24 h cycle, corresponding to changes
in consumer demand within a day (Figure 12). The same problem has also been simulated by
Taylor et al. [4]. In their study, they neglected the inertia term in the momentum equation, and
the method of characteristics (MOC) was used to solve the resulting set of linear hyperbolic
partial differential equations.
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Figure 10. Inset of predicted pressure histories at the inlet for test problem 2 (early time).

Figure 11. Inset of predicted pressure histories at the inlet for test problem 2 (late time).

Table I is a summary of numerical experiments carried out for the slow transient propaga-
tion in this pipeline. In the table, nj is the number of total mesh cells, nk is the total time steps
needed for the computation of a 24 h cycle, Dx is the grid size, Dt is the time step, g is the
CFL-like restriction and t is the time at which the numerical computation begins to blow up.

Table I demonstrates that the larger grid sizes require smaller CFL-like restriction g for
stable numerical computations, and vice versa; hence, with the decreasing grid size Dx, the
stability region of the TVD/Roe scheme is expanded. Similarly, with decreasing time step Dt,
while keeping the same grid size Dx, the time at which the numerical computation begins to
become unstable increases.
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Figure 12. Imposed outlet mass flux.

Table I. Summary of numerical experiments

nk Dx (m) Dt (ms) gnj Result

1 196 000 36.13 72.262000 0.736 Stable
2000 2 392 000 36.13 36.13 0.368 Stable
2000 23 920 000 36.13 3.613 0.0368 Stable

598 000 72.26 144.521000 0.736 Blow up at t=15.22 h
1000 1 196 000 72.26 72.26 0.368 Stable
1000 3 588 000 72.26 24.087 0.1227 Stable

11 960 000 72.26 7.2261000 0.0368 Stable
500 1 495 000 144.52 57.808 0.1472 Stable

2 990 000 144.52 28.904500 0.0736 Stable
250 1 495 000 289.04 57.808 0.0736 Stable
100 119 600 722.6 722.6 0.368 Blow up at t=1.144 h

1 196 000 722.6 72.26100 0.0368 Blow up at t=14.592 h
2 392 000 722.6 36.13100 0.0184 Blow up at t=15.054 h
4 784 000 722.6 18.065100 0.0092 Blow up at t=15.62 h

100 11 960 000 722.6 7.226 0.00368 Stable

Figure 13 shows the comparisons of the predicted pressure histories at outlet and midpoint,
the predicted gas mass flux histories at inlet and midpoint of the pipeline, while using the same
grid size Dx=36.13 m, different time steps (Dt=72.26, 36.13, 3.613 ms), and hence different
CFL-like restrictions (g=0.736, 0.368, 0.0368). Figure 14 shows the comparisons of the
predicted pressure histories at outlet and midpoint, the predicted gas mass flux histories at inlet
and midpoint of the pipeline, while using the same grid size (Dx=72.26 m), different time
steps (Dt=72.26, 24.087, 7.226 ms), and hence different CFL-like restrictions (g=0.368,
0.1227, 0.0368).
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Figure 13. (1) Dx=36.13 m, Dt=72.26 ms, g=0.736; (2) Dx=36.13 m, Dt=36.13 ms, g=0.368;
(3) Dx=36.13 m, Dt=3.613 ms, g=0.0368.

Figure 15 shows the comparisons of the predicted pressure histories at outlet and midpoint,
the predicted gas mass flux histories at inlet and midpoint of the pipeline, while using the same
grid size (Dx=144.52 m), different time steps (Dt=57.808, 28.904 ms), and hence different
CFL-like restrictions (g=0.1472, 0.0736).

Figure 16 shows the comparisons of the predicted pressure histories at outlet and midpoint,
the predicted gas mass flux histories at inlet and midpoint of the pipeline, while using the grid
size Dx=289.04 m, the time step (Dt=57.808 ms), and hence the CFL-like restriction
(g=0.0736).

Figure 17 shows the comparisons of the predicted pressure histories at outlet and midpoint,
the predicted gas mass flux histories at inlet and midpoint of the pipeline, while using the grid
size Dx=722.6 m, the time step (Dt=7.226 ms), and then the CFL-like restriction g=0.00368.
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Figure 14. (1) Dx=72.26 m, Dt=72.26 ms, g=0.368; (2) Dx=72.26 m, Dt=24.087 ms, g=0.1227;
(3) Dx=72.26 m, Dt=7.226 ms, g=0.0368.

Remark
Harten [17] has proved that his second-order-accurate, 5-point explicit scheme is TVD and
convergent in the homogeneous constant coefficients case for all initial data of bounded total
variation under the following CFL-like restriction (see Lemma 4.2 and Corollary 4.3 of Harten
[17], p. 371).

l max�ak�5g=min gk51, (73)

where l=Dt/Dx, ak is the eigenvalue of the Jacobian matrix at some averaged state [defined
by Equations (20) and (21)]. In the present study, Roe’s linearization technique is used, and ak
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Figure 15. (1) Dx=144.52 m, Dt=57.808 ms, g=0.1472; (2) Dx=144.52 m, Dt=28.904 ms, g=0.0736.

in Equation (73) is calculated by Equation (35). Hence, for the calculations of our inhomoge-
neous system of non-linear hyperbolic conservation laws (Equation (7))

g=l max�c+ ū �, (74)

where c is the isothermal acoustic speed in the gas, and ū is the Roe-averaged velocity [see
Equation (34)].

The numerical experiments (see Table I) have demonstrated that the CFL-like restriction g

that guarantees the TVD of the scheme and convergence in the homogeneous constant
coefficient case [i.e. A(U)
 ((/(U)f(U)=constant in Equation (19)] cannot guarantee even
the non-linear stability for the present inhomogeneous system of non-linear hyperbolic
conservation laws (Equation (7)).
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Figure 16. Dx=289.04 m, Dt=57.808, g=0.0736.

7. CONCLUSIONS

A new class of high-resolution hybrid TVD schemes, with appropriate boundary condition
handling capability, is proposed. These include a hybrid TVD/Godunov scheme, a hybrid
TVD/Roe scheme and a hybrid TVD/LW scheme. These hybrid TVD schemes enable us to
achieve a higher resolution capturing of transients propagation that help to eliminate the
frontal oscillations and smearing. A severe condition, involving instantaneous downstream
valve closure was used to test the efficacy of these hybrid TVD schemes. In spite of the strong
wave generated, these hybrid TVD schemes successfully handled the problem. The results
generated by the hybrid TVD/Roe and TVD/Godunov schemes are excellent and comparable
with each other, and the hybrid TVD/LW scheme performed reasonably well. The efficacy of
different numerical boundary condition treatment strategies is also investigated.
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Figure 17. Dx=722.6 m, Dt=7.226 ms, g=0.00368.

The hybrid TVD/Roe scheme was used to simulate a fast transient in a short pipe. It
achieves excellent results that capture and maintain the integrity of the wave fronts even after
a long time. For the simulation of a slow transients propagation in a long transmission pipeline
by the hybrid TVD/Roe scheme, comparisons of computational results are made using
different discretizing parameters. Also, the numerical non-linear stability problem is briefly
discussed, while using the hybrid TVD/Roe scheme to solve this mixed initial boundary value
problem of a non-homogeneous system of non-linear hyperbolic conservation laws for a long
transmission pipeline.
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APPENDIX A. NOMENCLATURE

aI eigenvalue of Jacobian matrix A(U) used in Equation (27)
ã i eigenvalue defined by Equation (35)

cross-sectional area of pipeline, or the Jacobian matrixA
Jacobian matrix defined by Equation (33)A0
some variable, scalar or vectorb

c isothermal speed of sound
pipeline diameterD
flux vector in Equation (19)f

f0 numerical flux vector defined by Equation (25)
friction factor of gas flowfg

F� flux vector in Equation (7)
g gravitational acceleration, or quantity defined by Equation (28)

defined by Equation (29)g̃
left-eigenvector matrix of A used in Equation (23)L

m ru, gas mass flux
gas mass flux at the inlet of the pipeline at the beginning of observationm0

gas molecular weightMg

pressurep
coefficient of numerical viscosity defined by Equation (40)Qk

vector in the right-hand side of Equation (7)r	 (U� )
universal gas constant, or right-eigenvector matrix of AR
right eigenvector used in Equation (22)RI

R0 i right eigenvector defined by Equation (36)
defined by Equation (28)Sk

timet
T absolute gas temperature

gas velocity, or state variable vector used in Equations (20) and (21)u
Roe-averaged velocity [see Equation (34)]ū

U state variable vector in Equation (19)
state variable vector in Equation (7)U�
state variable vector used in Equations (20) and (24)6

V an average function defined by Equations (20) and (21)
axial co-ordinatex
gas compressibility factorZ

Greek letters
defined by Equation (23)a

defined by Equation (26)b

pipeline roughnesso

the CFL-like restrictiong

Dt/Dxl
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gas dynamic viscositym

defined by Equation (27)n

gas densityr

r0 gas density at the inlet of the pipeline at the beginning of observation
(r/r0)2 [see Equation (15)]r̄

defined by Equation (30)Y
total length, or length from the inlet of pipe to the grid node considered used inDL
Equation (14)

DT time interval between two neighboring wave fronts
uniform time stepDt
uniform grid sizeDx

Subscripts
gasg
inlet, upstream, or initial condition0

i−1 the (i−1)th node of the pipeline
the ith node of the pipelineI
the (i+1)th node of the pipelinei+1
the midpoint between the (i−2)th and (i−1)th nodes of the pipelinei−3/2
the midpoint between the (i−1)th and ith nodes of the pipelinei−1/2

i+1/2 the midpoint between the ith and (i+1)th nodes, or some kind of average
between the quantities at ith and (i+1)th nodes

i+3/2 the midpoint between the (i+1)th end (i+2)th nodes
the njth node, i.e. the outlet or the total mesh number of the pipeline (see Tablenj
I)
the total time step of calculation (see Table I)nk
left side, see Equation (33)l
right side, see Equation (33)r

Superscripts
n, n+ the nth and (n+1)th time levels respectively
1

SI metric con6ersion factors
ft×3.048E−01=m
ft3×2.831685E−02=m3

in.×2.54E+00=cm
lbm×4.535924E−01=kg
miles×1.609344E+00=km
psi×6.894757E+00=kPa
R(R/1.8)=K

Conversion factor is exact.
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